Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Data science and predictive analytics [electronic resource] : biomedical and health applications using R / Ivo D. Dinov.

By: Material type: TextTextPublication details: Cham. : Springer, ©2018.Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319723471
  • 3319723472
Subject(s): Genre/Form: DDC classification:
  • 005.7 23
LOC classification:
  • QA76.9.B45 D56 2018
Online resources:
Contents:
1 Introduction.- 2 Foundations of R.- 3 Managing Data in R.- 4 Data Visualization.- 5 Linear Algebra & Matrix Computing.- 6 Dimensionality Reduction.- 7 Lazy Learning: Classification Using Nearest Neighbors.- 8 Probabilistic Learning: Classification Using Naive Bayes.- 9 Decision Tree Divide and Conquer Classification.- 10 Forecasting Numeric Data Using Regression Models.- 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines.- 12 Apriori Association Rules Learning.- 13 k-Means Clustering.- 14 Model Performance Assessment.- 15 Improving Model Performance.- 16 Specialized Machine Learning Topics.- 17 Variable/Feature Selection.- 18 Regularized Linear Modeling and Controlled Variable Selection.- 19 Big Longitudinal Data Analysis.- 20 Natural Language Processing/Text Mining.- 21 Prediction and Internal Statistical Cross Validation.- 22 Function Optimization.- 23 Deep Learning Neural Networks.- 24 Summary.- 25 Glossary.- 26 Index.- 27 Errata.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status
Цахим ном Цахим ном Эрдэм шинжилгээний номын сан 005.7 Available

Academic

1 Introduction.- 2 Foundations of R.- 3 Managing Data in R.- 4 Data Visualization.- 5 Linear Algebra & Matrix Computing.- 6 Dimensionality Reduction.- 7 Lazy Learning: Classification Using Nearest Neighbors.- 8 Probabilistic Learning: Classification Using Naive Bayes.- 9 Decision Tree Divide and Conquer Classification.- 10 Forecasting Numeric Data Using Regression Models.- 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines.- 12 Apriori Association Rules Learning.- 13 k-Means Clustering.- 14 Model Performance Assessment.- 15 Improving Model Performance.- 16 Specialized Machine Learning Topics.- 17 Variable/Feature Selection.- 18 Regularized Linear Modeling and Controlled Variable Selection.- 19 Big Longitudinal Data Analysis.- 20 Natural Language Processing/Text Mining.- 21 Prediction and Internal Statistical Cross Validation.- 22 Function Optimization.- 23 Deep Learning Neural Networks.- 24 Summary.- 25 Glossary.- 26 Index.- 27 Errata.

Legal Deposit; Only available on premises controlled by the deposit library and to one user at any one time; The Legal Deposit Libraries (Non-Print Works) Regulations (UK). UkOxU

Restricted: Printing from this resource is governed by The Legal Deposit Libraries (Non-Print Works) Regulations (UK) and UK copyright law currently in force. UkOxU

English

Description based on online resource; title from digital title page (viewed on September 11, 2018).

Эрүүл Мэндийн Шинжлэх Ухааны Төв Номын Сан
ХАЯГ: Анагаахын Шинжлэх Ухааны Үндэсний Их Сургууль, С.Зоригийн гудамж, Ш/Х-48/111 Улаанбаатар хот 14210, Монгол Улс
УТАС: 11-320623| И-МЭЙЛ: library.support@mnums.edu.mn|ВЕБ: mnums.edu.mn